B havesh S tudy C ircle
 AMTI (NMTC) - 2004
 RAMANUJAN CONTEST - INTER LEVEL

1. When $1^{2003}+2^{2003}+3^{3003}+\ldots .+2003^{2003}$ is divided by 2004 , then the remainder is
(A) 0
(B) 1
(C) 1002
(D) 2003
2. Each number from $1,2,3, \ldots, 100$ (decimal scale) is written in base 6 and their product is also written in base 6 . Then the number of zeroes at the end of this product is
(A) 24
(B) 48
(C) 18
(D) 97
3. Given that $\mathrm{a}_{1} \mathrm{a}_{2}, \ldots, \mathrm{a}_{2004}$ are distinct positive real numbers then $\frac{a_{1}}{a_{2}}+\frac{a_{2}}{a_{3}}+\ldots .+\frac{a_{2003}}{a_{2004}}+\frac{a_{2004}}{a_{1}}$ is
(A) less than 2004
(B) less than 1
(C) greater than 2004
(D) equal to 1
4. Two chords of a circle bisect each other. Then
(A) The chords are of equal length but less than the length of the diameter.
(B) The chords are of unequal length.
(C) The chords should be perpendicular bisectors of each other.
(D) The chords are any two diameters.
5. A man tosses a fair coin till he gets a head. The probability that he gets head in at most n tosses is
(A) $\frac{1}{n}$
(B) $\frac{1}{2^{n}}$
(C) $1-\frac{1}{n}$
(D) $\quad 1-\frac{1}{2^{n}}$
6. - - -

(A) - -
(B) --
(C) --
(D) --
7. - - -
(A) -- -
(B) ---
(C) -- -
(D) ---
8. - - -
(A) -- -
(B) ---
(C) -- -
(D) ---
9. - - -
(A) ---
(B) ---
(C) -- -
(D) ---
10. - - - -
(A) --
(B) --
(C) - -
(D) -- -
11. Kumar never lies except on Tuesdays. On Tuesdays, he always lies. On how many days of the week can he say "If I did not lie yesterday then I will lie tomorrow."
(A) 1
(B) 2
(C) 3
(D) 4
12. The range of function $f(r)={ }_{7-r} P_{r-3}$ where ${ }_{m} P_{n}$ represents permutations of ' m ' things taken ' n ' at a time and where r is a non-negative integer is
(A) $\{1,2,3,4,5\}(B)$
$\{1,2,3,4\}$
(C) $\{1,2\}$
(D) $\{1,2,3\}$
13. The roots of $64 x^{3}-144 x^{2}+92 x-15=0$ are in A.P. Then the difference between the largest and smallest is
(A) $\frac{1}{2}$
(B) $\frac{3}{4}$
(C) $\frac{7}{8}$
(D) 1
14. In the following figure, if $\mathrm{AD}=\mathrm{DC}=\mathrm{x}$ and $\mathrm{BC}=\mathrm{y}$ then $\mathrm{AB}=\mathrm{AC}=$?

(A) $\mathrm{x}+\mathrm{y}$
(B) $2 y+x$
(C) 2 y
(D) $2 x$
15. ABCD is a tetrahedron. The number of planes from which the distances to $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are equal is
(A) 0
(B) 5
(C) 4
(D) 3
16. The three last digits of $7{ }^{9999}$ are
(A) 263
(B) 143
(C) 343
(D) 523
17. Each of the faces of a cube is coloured by a different colour. How many of the colourings are distinct?
(A) 6
(B) 30
(C) 18
(D) 24
18. Which of the following is a continuous function f satisfying $3 f(2 x+1)=f(x)+5 x$?
(A) $f(x)=2 x+5$
(B) $\mathrm{f}(\mathrm{x})=\mathrm{x}+1$
(C) $f(x)=x-\frac{3}{2}$
(D) $\mathrm{f}(\mathrm{x})=\mathrm{x}+\frac{1}{2}$
19. $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{M}$ are four points on a circle such that ABC forms an equilateral triangle and M lies on the arc BC as in the figure. Which of the following holds good?

(A) $|\mathrm{MA}|+|\mathrm{MB}|+|\mathrm{MC}|=2|\mathrm{AB}|$
(B) $|\mathrm{MA}|=|\mathrm{MB}|+|\mathrm{MC}|$
(C) $|\mathrm{MA}|^{2}=|\mathrm{MB}|^{2}+|\mathrm{MC}|^{2}$
(D) $|\mathrm{MA}|^{2}+|\mathrm{MB}|^{2}+|\mathrm{MC}|^{2}=$ Area of $\Delta \mathrm{ABC}$
20. The positive numbers x and y satisfy $x y=1$. The minimum value of $\frac{1}{x^{4}}+\frac{1}{4 y^{4}}$ is
(A) $\frac{1}{2}$
(B) $\frac{5}{8}$
(C) 1
(D) $\frac{5}{4}$
21. A cubic polynomial P is such that $P(1)=1, P(2)=2, P(3)=3$ and $P(4)=5$. The value of $P(6)$ is
(A) 7
(B) 10
(C) 13
(D) 16
22. In $\triangle \mathrm{ABC}$, the altitude from A to BC meets BC at D and the altitude from B to CA meets AD at H . If $\mathrm{AD}=4, \mathrm{BD}=3, \mathrm{CD}=2$ then the length of HD is
(A) $\frac{\sqrt{5}}{2}$
(B) $\frac{3}{2}$
(C) $\sqrt{5}$
(D) $\frac{5}{2}$
23. A fair coin is tossed 10,000 times. The probability p of obtaining at least 3 heads in a row satisfies
(A) $0 \leq p \leq \frac{1}{4}$
(B) $\quad \frac{1}{4} \leq p \leq \frac{1}{2}$
(C) $\frac{1}{2} \leq p<\frac{3}{4}$
(D) $\frac{3}{4} \leq p<1$
24. The number of different positive integer triplets (x, y, z) satisfying the equations $x^{2}+y-z=100$ and $x+y^{2}-x=124$ is
(A) 0
(B) 1
(C) 2
(D) 3
25. If $\phi(\mathrm{n})$ denotes the number of positive integers less than n and prime to n and $A=\{n \mid \phi(n)=17\}$ then the number of elements in A is
(A) infinite
(B) 16
(C) 17^{2}
(D) zero
26. For what values of n is an n -digit number uniquely determined from the sum and product of its digits?
(A) 1
(B) 2
(C) 3
(D) 4
27. The number of polynomials $P(x)$ satisfying the equation $P\left(x^{2}\right)+2 x^{2}+10 x=2 x P(x+1)+3$ is
(A) 2
(B) 1
(C) 3
(D) infinite
28. Let n be a positive integer. Then the number of common factors of $n^{2}+3 n+1$ and $n^{2}+4 n+3$ is
(A) $(\mathrm{n}+1)$
(B) $\mathrm{n}-1$
(C) 2
(D) 1
29. If $f(n+1)=f(n)+n$ for all $n \geq 0$ or $f(0)=1$ then $f(200)$ equals
(A) 21100
(B) 21000
(C) 20900
(D) 19900
30. The rays $P X$ and $P Y$ cut off $\operatorname{arc} A B$ and $C D$ of a circle with radius 4. If the length of arc $C D$ is 2 times the length of the arc $A B$ and length of $C D$ is $\frac{4 \pi}{5}$, then the angle APB is
(A) 9^{0}
(B) 10^{0}
(C) 12^{0}
(D) 18^{0}

B havesh S tudy C ircle
 AMTI (NMTC) - 2011

RAMANUJAN CONTEST - INTER LEVEL

PART - A

1. ABCD is a rhombus in which B is obtuse. Perpendiculars are drawn from B to the sides and ' a ' is the length of each perpendicular. The distance between their feet is ' b '. Area of the rhombus is
(A) $\frac{a^{4}}{b \sqrt{4 a^{2}-b^{2}}}$
(B) $\frac{a^{4}}{2 b \sqrt{4 a^{2}-b^{2}}}$
(C) $\frac{2 a^{4}}{b \sqrt{4 a^{2}-b^{2}}}$
(D) $\frac{2 a^{4}}{b \sqrt{4 b^{2}-a^{2}}}$
2. Let n be a natural number. The number of n 's for which $\left(n^{4}+2 n^{3}+2 n^{2}+2 n+1\right)$ is a perfect square is
(A) 1
(B) 2
(C) 7
(D) 0
3. [x] denotes the greatest integer not exceeding x. If $a=2+\sqrt{3}$ then the value of $a^{n}+a^{-n}-\left[a^{n}\right]$ for any positive integer n is
(A) 2
(B) $\sqrt{3}$
(C) 1
(D) 0
4. The quadrilateral $A B C D$ is inscribed in a circle. The diagonals $A C$ and $B D$ cut at Q. The sides DA and CB are produced to meet at P . If $\mathrm{CD}=\mathrm{CP}=\mathrm{DQ}$ then the measure of $\angle \mathrm{CAD}$ is
(A) 45°
(B) 70^{0}
(C) 60^{0}
(D) 55°
5. The expression $\left(4 n^{3}+6 n^{2}+4 n+1\right)$ is
(A) Composite for all natural numbers n.
(B) Prime for exactly two natural numbers n.
(C) Prime for infinitely many natural numbers n.
(D) Composite for odd n and prime for even n .
6. $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots$ is a sequence for which $\mathrm{a}_{1}=2, \mathrm{a}_{2}=3$ and $\mathrm{a}_{\mathrm{n}}=\frac{a_{n-1}}{a_{n-2}}$ for every natural number $n \geq 3$. The value of a_{2011} is
(A) 3
(B) $\frac{3}{2}$
(C) $\frac{2}{3}$
(D) 2
7. If 49 in base a and 94 in base b represent the same number in base 10 , then the least possible value of this number is (in base 10)
(A) a square number
(B) a four digit number necessarily
(C) a three digit square free number
(D) a three digit prime
8. a, b are positive integers. If $21 \mathrm{ab}^{2}$ and 15 ab are perfect squares, the minimum value of $a+b$ is
(A) 56
(B) 65
(C) 23
(D) 42
9. ABC is a triangle. $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=9 \mathrm{~cm}, \mathrm{CA}=7 \mathrm{~cm}$. Circles are drawn with centres at $\mathrm{A}, \mathrm{B}, \mathrm{C}$. The circles with centres A, B touch externally. The circle with centre C touches these two circles internally. The sum of the radii of these circles (in cm) is
(A) 22
(B) 17
(C) 44
(D) 111
10. ABCD is a convex quadrilateral in which $\mathrm{AD}=\sqrt{3}, \angle \mathrm{~A}=60^{\circ}, \angle \mathrm{D}=120^{\circ}$ and $\mathrm{AB}+\mathrm{CD}=2 \mathrm{AD} . \mathrm{M}$ is the midpoint of BC . Then $\mathrm{DM}=$
(A) $\frac{\sqrt{3}}{2}$
(B) $\frac{3}{2}$
(C) $\frac{2}{3}$
(D) $\frac{2}{\sqrt{3}}$
11. A triangle has integer sides. One side is three times a second side. The length of the third side is 15 . The greatest possible perimeter of the triangle is
(A) 43
(B) 46
(C) 48
(D) 52
12. If $\frac{x}{3 y}=\frac{y}{2 x-5 y}=\frac{6 x-15 y}{x}$ and the expression $\left(-4 x^{2}+36 y-8\right)$ takes the maximum value for $\mathrm{x}=\mathrm{m}$ and $\mathrm{y}=\mathrm{n}$ then $\mathrm{m}+\mathrm{n}=$
(A) 2011
(B) 2
(C) 3
(D) 17
13. $A B C$ is a triangle. Perpendiculars $B M$ and $C N$ are drawn to the tangent at A to the circum circle of $\triangle \mathrm{ABC}$. The tangent at A meets BC produced at D . If $\mathrm{BC}=5 \mathrm{~cm}$, the shorter perpendicular $\mathrm{CN}=6 \mathrm{~cm}$ and $\mathrm{AD}=5 \sqrt{6} \mathrm{~cm}$, then the area of the trapezoid BCNM (in cm^{2}) is
(A) 30
(B) 40
(C) 35
(D) 45
14. The number of integers λ for which the equation $x^{3}-3 x+\lambda=0$ has integer roots is
(A) 1
(B) 2
(C) 7
(D) infinite
15. A straight line passing through $A(-1,-25)$ and parallel to the line $5 x-4 y+95=0$ cuts the x and y axes at B and C respectively. Consider the unit grid in the plane. The number of squares in the grid containing the line segment BC in their interior is
(A) 0
(B) 15
(C) 27
(D) 5

PART - B

1. The function $\mathrm{f}(\mathrm{x})$ satisfies the condition $(\mathrm{x}-2) \mathrm{f}(\mathrm{x})+2 \mathrm{f}\left(\frac{1}{x}\right)=2$ for all $\mathrm{x} \neq 0$. Then the value of $f(2)$ is \qquad .
2. Let $s(x)=6 x^{5}+5 x^{4}+4 x^{3}+3 x^{2}+2 x+1$. The zeros of $f(x)$ are a, b, c, d, e. Then the value of $(1+a)(1+b)(1+c)(1+d)(1+e)=$ \qquad _.
3. A quadrilateral inscribed in the circle has side lengths $\sqrt{20}, \sqrt{99}, \sqrt{22}$ and $\sqrt{97}$ in order. Taking $\pi=\frac{22}{7}$, the area of the circle is \qquad -
4. The number of rectangles that can be obtained by joining four of the 14 vertices of a 14 sided regular polygon is \qquad .
5. Let $\mathrm{a}_{0}=1, \mathrm{a}_{\mathrm{n}+1}=5 \mathrm{a}_{\mathrm{n}}+1$ for $\mathrm{n} \geq 1$. The remainder when a_{2011} is divided by 13 is \qquad .
6. ABCD is a rhombus of side 2 units. $\angle \mathrm{B}=30^{\circ}$. Then the area of the region within the rhombus such that every point in this region is closer to vertex B than to vertices A, C and D is \qquad _.
7. In a rectangle $A B C D$ where $A B=6, B C=3$, point P is chosen on $A B$ such that $\angle \mathrm{APD}=2 \angle \mathrm{CPB}$. Then AP $=$ \qquad _.
8. The perimeter of the octagon formed by the roots of the polynomial equation $Z^{8}-256=0$, plotted in the complex plane in order is \qquad _.
9. Deleted.
10. If $\mathrm{f}(\mathrm{x})=\frac{3 x}{5 x+4}$ and $\mathrm{f}(\mathrm{g}(\mathrm{x}))=\mathrm{x}$, then the expression for the function $\mathrm{g}(\mathrm{x})$ is \qquad -
11. ABC is a triangle. P is any point inside the triangle. $\mathrm{d}_{1}, \mathrm{~d}_{2}, \mathrm{~d}_{3}$ are the lengths of the perpendiculars to the sides $B C, C A, A B$ respectively from $P . h 1, h_{2}, h_{3}$ ar the altitudes to these sides respectively. The numerical value of $\frac{d_{1}}{h_{1}}+\frac{d_{2}}{h_{2}}+\frac{d_{3}}{h_{3}}$ is \qquad $-$
12. The equal sides of an isosceles triangle are each equal to 2011 cm . The length of the third side which makes the area of the triangle maximum is \qquad _.
13. Both the roots of $x^{2}-63 x+k=0$ are prime numbers. The sum of the digits of k is \qquad _.
14. The number of ordered pairs of integers (x, y) satisfying $x+y=x^{2}-x y+y^{2}$ is \qquad _.
15. ABC is a triangle in which $\mathrm{C}=900$. D lies on the segment BC such that $\mathrm{BD}=\mathrm{AC} \sqrt{6}$. E lies on the segment AC such that $\mathrm{AE}=\mathrm{CD} \sqrt{6}$. The acute angle between the lines AD and BE is \qquad _.

B havesh S tudy C ircle
 AMTI (NMTC) - 2012

RAMANUJAN CONTEST - INTER LEVEL

PART - A

1. The sum of the squares of all real numbers satisfying the equation $x^{256}-256^{32}=0$ is
(A) 8
(B) 128
(C) 512
(D) 65536
2. Two adjacent vertices of a square are on a circle of radius R and the other two vertices lie on a tangent to the circle. The length of the side of the square is
(A) $\frac{4 R}{3}$
(B) $\frac{6 R}{5}$
(C) $\frac{8 R}{5}$
(D) $\frac{3 R}{2}$
3. The polynomial $x^{2 n}+1(x+1)^{2 n}$ is not divisible by $\left(x^{2}+x+1\right)$ if n is equal to
(A) 17
(B) 20
(C) 21
(D) 64
4. The remainder when 3^{302} is divided by 11 is
(A) 10
(B) 9
(C) 8
(D) 7
5. If a, b and d are the lengths of a side, a shortest diagonal and a longest diagonal of a regular nonagon, then
(A) $d^{2}=a^{2}+a b+b^{2}$
(B) $\mathrm{d}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$
(C) $\mathrm{d}=\mathrm{a}+\mathrm{b}$
(D) $\mathrm{b}^{2}=\mathrm{ad}$
6. If a positive integer, after adding 100, becomes a perfect square, and also after adding 168 , becomes another perfect square. (168 is added to the original positive integer), then the sum of the digits of the integer is
(A) 12
(B) 11
(C) 8
(D) 7
7. ABC is a triangle inscribed in a circle. AD is the altitude of the triangle. DP is drawn parallel to AB to cut the tangent at A at P . Then $\angle \mathrm{CPA}$ is
(A) Equal to 90° when triangle ABC is acute angled
(B) Equal to 90° for any non-right angled triangle ABC
(C) Greater than 90° for the angle A obtuse
(D) Smaller than 90° for an acute angled triangle ABC
8. In the adjoining figure of a rectangular solid, it is given that $\angle \mathrm{DGH}=45^{\circ}$ and $\angle \mathrm{BGF}=60^{\circ}$. Then $\cos (\angle \mathrm{BGD})=$

(A) $\frac{\sqrt{6}-\sqrt{2}}{4}$
(B) $\frac{\sqrt{2}}{6}$
(C) $\frac{\sqrt{6}}{4}$
(D) $\frac{\sqrt{3}}{6}$
9. For the inequation $(1.25)^{1-x}<(0.64)^{2(1+\sqrt{x})}$.
(A) There is no real value of x exists
(B) There are infinitely many negative value of x exist
(C) Any real value of x greater than 25 satisfies the inequation
(D) There is exactly one positive and one negative integer only satisfying the equation
10. The number $\left(5^{6}-10^{4}\right)$ is
(A) Negative
(B) divisible by 10
(C) divisible by 100
(D) divisible by 9
11. There are 'a' points on a line and ' b ' points on a parallel line. The number of triangles formed by these $(a+b)$ points as vertices is
(A) $\frac{a b(a+b-2)}{2}$
(B) $\frac{a b(a+b-1)}{2}$
(C) $\frac{a b(a+b-4)}{2}$
(D) $\frac{a b(a+b)}{2}$
12. The equation $x^{4}+16 x-12=0$ has
(A) all the roots real
(B) all the roots complex
(C) two roots real and two roots complex
(D) all the roots integers
13. A positive integer n has 60 divisors and 7 n has 80 divisors. What is the greatest value of k such that 7^{k} divides n .
(A) 1
(B) 2
(C) 3
(D) 0
14. In the XY plane two points $A(2,2)$ and $B(7,7)$ are taken. R is the region in the first quadrant which consists of points C such that triangle $A B C$ is an acute angled triangle. The closest integer to the area of the region R is
(A) 25
(B) 39
(C) 51
(D) 60
15. How many three digit numbers have distinct digits such that one digit is the average of the other two ?
(A) 104
(B) 112
(C) 256
(D) 12

PART - B

1. Let $f(x)=x^{2}+b x+c$ where b, c are integers. If $f(x)$ is a factor of both $x^{4}+6 x^{2}+25$ and $3 x^{4}+4 x^{2}+28 x+5$, then the value of $f(1)$ is \qquad _.
2. Mahadevan's age is 'a' years, which is also the sum of the ages of his three children. His age b years ago was twice the sum of their ages. Then $\left(\frac{a}{b}\right)=$ \qquad -
3. $\angle \mathrm{RST}$ is an angle in the minor segment of a circle of centre O , then the angle (in degrees) RST less the angle ORT is \qquad _.
4. $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are three towns connected by straight roads from A to B, B to C and C to A . $\mathrm{AB}=5 \mathrm{~km}, \mathrm{BC}=6 \mathrm{~km}, \mathrm{CA}=7 \mathrm{~km}$. Two cyclists start simultaneoulsy form A and go in different roads with same speed. They meet at D . then $\mathrm{BD}=$ \qquad _.
5. f is a linear function given by $f(x)=a x+b$ and $f^{-1}(x)=b x+a$ when a, b are real. The value of $a+b$ is equal to \qquad _.
6. ABC is triangle. A point O is taken inside the triangle such that $\angle \mathrm{BOC}=120^{\circ}$. $\mathrm{OD}, \mathrm{OE}, \mathrm{OF}$ are drawn perpendiculars to the sides $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ respectively. Then $\angle \mathrm{EDF}+\mathrm{EAF}=$ \qquad .
7. ABC is an isosceles triangle in which $\mathrm{AB}=\mathrm{BC} . \mathrm{BC}$ is produced to D such that $\angle \mathrm{CAD}=\frac{1}{2} \angle \mathrm{BAC}$. If L is the foot of the $\perp \mathrm{r}$ from C to AD , then the value of $\frac{A L}{A D}=$ \qquad _-
8. The values of x satisfying the inequality $x-\sqrt{1-|x|}<0$ lie in $\left[-1, \frac{a}{2}\right]$. Then te value of a is \qquad _.
9. For some real numbers a and b, the equation $8 x^{3}+4 a x^{2}+2 b x+a=0$ has three distinct positive roots. If the sum of the logarithms to base 2 of the roots is 5 , the value of a is
\qquad .
10. ABCD is a quadrilateral in the first equation of the coordinate axes. A is $(3,9), \mathrm{B}$ is $(1,1), \mathrm{C}$ is $(5,3)$ and D is (a, b). The quadrilateral formed by joining the mid-points of $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA is a square. The sum of the coordinates of the point D is \qquad _.
11. The number of distinct four-tuples of numbers (a, b, c, d) of rational numbers satisfying $\operatorname{alog}_{10} 2+\operatorname{blog}_{10} 3+\operatorname{cog}_{10} 5+\mathrm{d} \log _{10} 7=2012$ is \qquad .
12. If the graph of $f(x)=||x-2|-a|-3$ has exactly three $x-$ intercepts, then a is equal to
\qquad _.
13. If we add the square of the digit in the tens place of a positive two digit number to the product of the digits of the number, we get 52 . If we add the square of the digit in the units place of the number to the same product of the digits, we get 117. The two digit number is \qquad _.

B havesh S tudy C ircle
 AMTI (NMTC) - 2014

RAMANUJAN CONTEST - INTER LEVEL

PART - A

1. The number of non-zero integers x such that $-10<x<15$ for which $3 x^{3}+7 x^{2}$ is the square of an integer is
(A) 5
(B) 6
(C) 0
(D) 1
2. The vertices of a triangle ABC are lattice points (that is, points with integer coordinates). Two of its sides have lengths which belong to the set $\{\sqrt{19}, \sqrt{2013}, \sqrt{2014}\}$. The maximum possible area of the triangle is
(A) 2013
(B) 1007
(C) 2014
(D) $\sqrt{2014}$
3. The minimum value of the terms of the sequence $\sqrt{\frac{7}{6}}+\sqrt{\frac{96}{7}}, \sqrt{\frac{8}{6}}+\sqrt{\frac{96}{8}}, \sqrt{\frac{9}{6}}+\sqrt{\frac{96}{9}}, \ldots \ldots, \sqrt{\frac{95}{6}}+\sqrt{\frac{96}{95}}$ is
(A) 6
(B) 7
(C) 8
(D) 4
4. ABCD is a cyclic quadrilateral in a circle of radius $\mathrm{r} . \mathrm{AB}$ is a diameter of the circle. CD is parallel to $\mathrm{AB} \cdot \mathrm{CD}=\mathrm{b}, \mathrm{AD}=\mathrm{BC}=\mathrm{a}$. The value of $\frac{2 r^{2}-a^{2}}{b r}$ is
(A) 1
(B) 2
(C) 3
(D) 4
5. Positive integers $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are chosen so that $\mathrm{a}<\mathrm{b}<\mathrm{c}$ and the system of equations $2 \mathrm{x}+\mathrm{y}=2013$ and $\mathrm{y}=|\mathrm{x}-\mathrm{a}|+|\mathrm{x}-\mathrm{b}|+|\mathrm{x}-\mathrm{c}|$ have exactly one solution. Then the minimum value of c is
(A) 760
(B) 1007
(C) 2013
(D) 2012
6. $A B C D$ is a rectangle. P and Q are points on $A B$ and $B C$ respectively such that the area of triangle $\mathrm{APD}=5$, area of triangle $\mathrm{PBQ}=4$ and area of triangle $\mathrm{QCD}=3$, all areas in square units. Then the area of the triangle DPQ is square units is
(A) 12
(B) $\frac{20}{3}$
(C) $2 \sqrt{21}$
(D) $\sqrt{21}$
7. The number of right triangles of integer length sides and the product of the leg lengths is equal to three times the perimeter is
(A) 0
(B) 1
(C) 2
(D) 3
8. Let S be the set of ordered triples (x, y, z) of real numbers for which $\log _{10}(x+y)=z$ and $\log _{10}\left(x^{2}+y^{2}\right)=z+1 . a, b$ are real numbers such that for all ordered triples (x, y, z) in S, we have $x^{3}+y^{3}=a \cdot 10^{3 z}+b \cdot 10^{2 z}$. Then the value of $(a+b)$ is
(A) $\frac{15}{2}$
(B) $\frac{29}{2}$
(C) 15
(D) $\frac{39}{2}$
9. The internal bisector of $\angle \mathrm{A}$ of a triangle ABC meets BC at P and $\mathrm{b}=2 \mathrm{c}$. If $9 \mathrm{AP}^{2}+2 \mathrm{a}^{2}=\mathrm{k} \cdot \mathrm{c}^{2}$, then k is
(A) 8
(B) 3
(C) 19
(D) 18
10. The product of 5 odd primes is a five digit number of the form $a b 0 a b$ where a, b are digits and the hundreds digit is zero. The number of such numbers is
(A) 0
(B) 9
(C) 13
(D) 18
11. The number of perfect square divisors of the product $1!2!3!4!\ldots .9$! is
(A) 583
(B) 615
(C) 627
(D) 672
12. Srilekha, Priyanka, Vidya and Vishwa bought a gift for their classmate's birthday. The gift is with someone of the four. Each makes a statement. One statement is false and the other three are true.
Srilekha : I do not have the gift and Vidya does not have the gift.
Priyanka : I do not have the gift and Srilekha does not have the gift.
Vidya : I do not have the gift and Priyanka does not have the gift.
Vishwa : I do not have the gift and Srilekha does not have the gift.
The gift is with
(A) Srilekha
(B) Priyanka
(C) Vidya
(D) Vishwa
13. In the figure below the triangle is a $3-4-5$ sides triangle. Two equal circles are placed as in the figure. The radius of each circle is

(A) $\frac{4}{5}$
(B) $\frac{5}{8}$
(C) $\frac{6}{11}$
(D) $\frac{5}{7}$
14. The number of positive integer pairs (m, n) where n is odd, that satisfy $\frac{1}{m}+\frac{4}{n}=\frac{1}{12}$ is
(A) 1
(B) 2
(C) 3
(D) 11
15. The number of points common to the two graphs whose equations are $\| x|-|y||+|x|+|y|=2$ and $2 y=|2 x-1|-3$ is
(A) 1
(B) 2
(C) 3
(D) 4

PART - B

16. When simplified, the value of $\frac{\left(10^{4}+324\right)\left(22^{4}+324\right)\left(34^{4}+324\right)\left(46^{4}+324\right)\left(58^{4}+324\right)}{\left(4^{4}+324\right)\left(16^{4}+324\right)\left(28^{4}+324\right)\left(40^{4}+324\right)\left(52^{4}+324\right)}$ is \qquad _.
17. The least positive integer a such that the equation $\cos ^{2} \pi(a-x)-2 \cos \pi(a-x)+$ $\cos \frac{3 \pi x}{2 a} \cdot \cos \left(\frac{\pi x}{2 a}+\frac{\pi}{3}\right)+2=0$ has a real root is \qquad -
18. The quadrilateral ABCD is inscribed in a circle. The diagonals AC and BD intersect at Q . The sides DA and CB are produced to meet at P. Given the $\mathrm{CD}=\mathrm{CP}=\mathrm{DQ}$, the value of $\angle \mathrm{CAD}=$ \qquad _.
19. Dividing a three digit number by the number obtained from it by swapping its first and last digits we get 3 as the quotient and the sum of the digits of the original number as the remainder. The number of such 3-digit numbers is \qquad _.
20. The number of pairs (a, b) of real numbers such that the zeros of the polynomials $\left(6 x^{2}-24 x-4 a\right)$ and $\left(x^{3}+a x^{2}+b x-8\right)$ are all non-negative real numbers is \qquad .
21. The number of pairs of positive integers (m, n) such that $\mathrm{m} \times \mathrm{n}=\operatorname{gcd}(\mathrm{m}, \mathrm{n})+\mathrm{lcm}(\mathrm{m}, \mathrm{n})$ is \qquad _.
22. Two spheres of radii 3 cm and 4 cm , whose centres are 5 cm apart cut each other. The volume common to both the spheres is given by $\frac{a}{b} \pi \mathrm{~cm}^{3}$ where $\frac{a}{b}$ is the fraction with the lowest numerator and denominator, then the value of $\frac{a}{b}$ is \qquad .
23. The number of points with integer coordinates on the line $x+y=1$ which are located inside the circle with centre $(0,0)$ and radius 3 is \qquad -
24. Look at the pattern shown in the figure Pentagonal Numbers.

25. The number of natural numbers $n \leq 2013$ for which $2^{n}-1$ is divisible by 7 is \qquad _.
26. A fruit basket contains 4 bananas, 5 oranges and 6 apples. The number of ways a person can make a selection of the fruits from among the fruits in the basket is \qquad .
27. $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are positive integers such that $\mathrm{a}+\mathrm{b}+\mathrm{c}=2013$. Given that $\mathrm{a}!\mathrm{b}!\mathrm{c}!=\mathrm{m} 10^{\mathrm{n}}$ where m, n are integers and m is not divisible by 10 , the smallest value of n is \qquad _.
28. In the figure (i) below, ABCD is a square. E is the midpoint of CB . AF is drawn perpendicular to $D E$. If the side of the square is 2013 cm the length of $F B$ is \qquad cm .

29. The number of primes p for which $(p+2)$ and $p^{2}+2 p-8$ are both primes is \qquad _.
30. $f(x)$ is a linear function. $f(0)=-5$ and $f(f(0))=-15$. The number of values of α for which the solutions to the inequality $\mathrm{f}(\mathrm{x}) \mathrm{f}(\alpha-\mathrm{x})>0$ form an interval of length 2 is \qquad _.

B havesh S tudy C ircle
 AMTI (NMTC) - 2015

RAMANUJAN CONTEST - INTER LEVEL

PART - A

1. When x, y, z are real, the minimum value of $2 x^{2}+2 y^{2}+5 z^{2}-2 x y-4 x z-4 y z-4 x-2 x+15$ is
(A) 18
(B) 25
(C) 10
(D) 15
2. If $\mathrm{f}(\mathrm{x})$ is a real values function and (for any x real $\neq 0) 3 \mathrm{f}(\mathrm{x})-2 \mathrm{f}\left(\frac{f}{x}\right)=\mathrm{x}$, the value of $f(4)$ is
(A) $\frac{5}{2}$
(B) $\frac{7}{2}$
(C) $\frac{1}{2}$
(D) 0
3. The number of natural numbers n for which $(3 n-4)$, $(4 n-5),(5 n-3)$ are all prime number is
(A) 0
(B) 1
(C) 2
(D) infinite
4. Five points on a circle are numbered 1, 2, 3, 4 and 5. A frog jumps in a clockwise direction from one point to another round the circle. If it is on an odd numbered point, it jumps one point, and if it is on an even-numbed point, it moves two points. The frog begins on point 5 . After 2004 jumps it will be on point
(A) 1
(B) 2
(C) 3
(D) 4
5. The number of solutions of the equation $\left(\log _{10} x\right)^{2}=\log _{10}(100 x)$ is
(A) 0
(B) 1
(C) 2
(D) 4
6. $A B C$ is a right angled triangle with hypotenuse $A B$ and $C F$ is the altitude. The circle with center at B and passing through F and another circle of the same radius with center at A insersect on the side $B C$. Then the ratio $\frac{B F}{B C}$ is equal to

(A) $\frac{1}{2}$
(B) $\frac{1}{\sqrt{2}}$
(C) $\frac{1}{\sqrt[3]{2}}$
(D) $\frac{1}{2 \sqrt{2}}$
7. The number of natural numbers n, for which $n!+5$ is a perfect cube is
(A) 0
(B) 1
(C) 2
(D) 5
8. Two sides of a triangle are 8 cm and 18 cm and the bisector of the angle formed by them is of length $\frac{60}{13} \mathrm{~cm}$. The length of the third side (in cm) is
(A) 22
(B) 23
(C) 24
(D) 25
9. A number of workers in their tea time went to a tea shop and took tea and snacks. At the end they decided to split the bill evenly among them. If each contributes Rs. 16, they found that they were 4 Rs. short, while if each contributes Rs. 19, they had enough to pay the bill, 15% for the tip and Rs. 2 left over. The number of workers is
(A) 10
(B) 12
(C) 15
(D) 11
10. Consider the figure ABCDEFGHIJKL as shown. Each side is of length 4 and the angle between any two consecutive sides is a right angle. AG and CH cut at M. The area of the quadrilateral ABCM is
(A) $\frac{88}{5}$
(B) $\frac{44}{3}$
(C) $\frac{77}{9}$
(D) $\frac{62}{3}$
11. The number of pairs of natural numbers (x, y) which satisfy $\frac{5}{x}+\frac{6}{y}=1$ is
(A) 5
(B) 30
(C) 11
(D) 8
12. The sides of a triangle are 15,20 and 25 . The length of the shortest altitude is
(A) 6
(B) 12
(C) 10
(D) 13
13. a, b, c are reals such that $a-7 b+8 c=4$ and $8 a+4 b-c=7$. The value of $a^{2}-b^{2}+c^{2}$ is
(A) 0
(B) 12
(C) 8
(D) 1
14. n is a five digit number. If q and r are respectively the quotient and remainder when n is divided by 100 , the number of n for which $(\mathrm{q}+\mathrm{r})$ is divisible by 11 is
(A) 8181
(B) 8180
(C) 8182
(D) 9000
15. A sphere is inscribed in a cube that has a surface area of $24 \mathrm{~cm}^{2}$. A second cube is then inscribed within the sphere. The surface area of the inner cube in square centimeters is
(A) 3
(B) 8
(C) 6
(D) 9

PART - B

16. The smallest multiple of 15 such that the result contains only 0 or 8 is \qquad _.
17. Vishwa is walking up a stair that has 10 steps and with each stride the goes up either one step of two steps. The number of different ways Vishwa can go up the stars is \qquad .
18. The quadrilateral ABCD is inscribed in a circle. The diagonals AC and BD cut at Q . DA produced and CB produced cut at P . If $\mathrm{CD}=\mathrm{CP}=\mathrm{DQ}$, then $\angle \mathrm{DAC}=$ \qquad -.

19. The sum of the first 100 terms of a arithmetic progression is -1 , and sum of the $2^{\text {nd }}, 4^{\text {th }}$, $6^{\text {th }}, 8^{\text {th }}$, and the $100^{\text {th }}$ terms is 1 . Then the sum of the squares of the first 100 terms of the A.P. is \qquad _.
20. The number of pairs of positive integers (m, n) such that m, n have no factors greater that 1 and $\frac{m}{n}+\frac{14 n}{9 m}$ is an integer is \qquad -
21. The number of two digit numbers that increase by 75% when their digits are reversed is \qquad _.
22. ABCD is a rectangle. A is $(14,-32)$, B is $(2014,168)$ and D is $(10, \mathrm{y})$ for some integer y . The area of the rectangle is \qquad _.
23. P is the vertex of cuboid. Q, R, S are points on the edges shown. If $P Q=4 \mathrm{~cm}, P R=4 \mathrm{~cm}$ and $P S=2 \mathrm{~cm}$ and the area of triangle QRS is $\sqrt{K} \mathrm{~cm}^{2}$ then $\mathrm{K}=$ \qquad .

24. ABCDEFGH is a regular octagon. ABP is an equilateral triangle with P inside the octagon. Then measure of $2 \angle \mathrm{APC}=$ \qquad _.

25. The number of numbers from 12 to 12345 inclusive having digits which are consecutive and in increasing order reading from left to right is \qquad _.
26. The number of integer pairs (m, n) such that $15 m^{2}-7 n^{2}=9$ is \qquad _.
27. A positive integer n is a multiple of 7 . If \sqrt{n} lies between 15 and 16 , the number of possible values of n is \qquad _.
28. The number 27000001 has exactly 4 prime factors. The sum of these prime factors is \qquad _.
29. a is an integer such that $\frac{a}{23!}=1+\frac{1}{2}+\frac{1}{3}+\ldots .+\frac{1}{23}$. The remainder when a is divided by 13 is \qquad _.
30. $A B C$ is a right triangle as shown. D is the midpoint of $A C . E$ is a point on $B C$ such that $\angle \mathrm{DEB}=30^{\circ} . \mathrm{DE}=\mathrm{K} \cdot \mathrm{AB}$ where K is a number. Then the value of K is \qquad .

B havesh S tudy C ircle
 AMTI (NMTC) - 2017

RAMANUJAN CONTEST - INTER LEVEL

PART - A

1. P is a point on AL , the altitude of the triangle ABC through A . If $\angle \mathrm{PBA}=20^{\circ}$, $\angle \mathrm{PBC}=40^{\circ}$ and $\angle \mathrm{PCB}=30^{\circ}$, then $\angle \mathrm{PCA}$ equals
(A) 20^{0}
(B) 10^{0}
(C) 15^{0}
(D) 18^{0}
2. ABCDE is a regular pentagon. The area of the star shaped region ACEBDA is 1 square cm . AC and BE meet at P and BD and CE meet at Q as shown in the figure. The area of $A P Q D$ in square cms is

(A) $\frac{1}{4}$
(B) $\frac{1}{3}$
(C) $\frac{1}{2}$
(D) $\frac{3}{4}$
3. The number of integer pairs (x, y) which satisfy the equation $x^{3}=y^{3}+2 y^{2}+1$ is
(A) 0
(B) 1
(C) 2
(D) 3
4. Let $f(x)=x^{4}+x^{3}+x^{2}+x+1$. The remainder when $f\left(x^{5}\right)$ is divided by $f(x)$ is
(A) 5
(B) 6
(C) 7
(D) 4
5. The number of positive integers a, b, c such that $a^{2}+b^{2}+c^{2}=a^{2} b^{2}$ is
(A) 1
(B) 2
(C) 5
(D) none of these
6. The number of triples (x, y, z) of real numbers such that $3 x^{2}+y^{2}+z^{2}=2 x(y+z)$ is
(A) 1
(B) 2
(C) 3
(D) 5
7. The number of real roots of the equation $x^{4}-4 x=1$ is
(A) 1
(B) 2
(C) 0
(D) 4
8. Given a set of r points in the plane so that no three are collinear, by a closed polygon we mean the polygon obtained by connecting them by r line segments as shown in the examples below in Figure 2 (here $r=5$). There are 10 points on a plane no three of which are collinear. The numbe of 5 sided closed polygons whose vertices are among these 10 points is

(A) 6048
(B) 1507
(C) 3024
(D) 10000
9. In the adjacent figure ABC is a right angled triangle. Squares are described externally on its sides and the outer vertices of these squares are joined as shown. If the lengths of the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CA}$ are respectively $\mathrm{c}, \mathrm{a}, \mathrm{b}$ the area of the hexagon PQRSTU is

(A) $2\left(a^{2}+a b+b^{2}\right)$
(B) $\mathrm{a}^{2}+\mathrm{ab}+\mathrm{b}^{2}$
(C) $3\left(\mathrm{a}^{2}+\mathrm{ab}+\mathrm{b}^{2}\right)$
(D) $\frac{1}{2}\left(\mathrm{a}^{2}+\mathrm{ab}+\mathrm{b}^{2}\right)$
10. ABCD is a square. From B, D lines are drawn to meet at P inside the square such that $\angle \mathrm{ADP}=25^{\circ}$ and $\angle \mathrm{ABP}=20^{\circ}$. Then $\angle \mathrm{BPC}$ is
(A) 70^{0}
(B) 80°
(C) 60^{0}
(D) 50^{0}
11. If p, q are positive odd integers such that $(1+3+5+\ldots .+\mathrm{p})+(1+3+5+\ldots+\mathrm{q})=$ $1+3 \ldots .+19$ then $\mathrm{p}+\mathrm{q}$ is
(A) a prime number
(B) divisible by 13
(C) odd number
(D) none of these
12. The number $2^{20}-1$ is divisible by
(A) 11 and 41
(B) 11 and 21
(C) 41 and 61
(D) 11 and 61
13. Five points O, A, B, C, D are taken in order on a straight line such that $O A=a, O B=b$, $\mathrm{OC}=\mathrm{c}$ and $\mathrm{OD}=\mathrm{d} . \mathrm{P}$ is a point on the line between B and C . If $\mathrm{AP}: \mathrm{PD}=\mathrm{BP}: \mathrm{BC}$, then OP is
(A) $\frac{a c-b d}{a-b+c-d}$
(B) $\frac{a c+b d}{a-b+c-d}$
(C) $\frac{a d-b c}{a-b+c-d}$
(D) none of these
14. The side $A B$ of an equilateral triangle $A B$ is produced to D such that $B D=2 A B$. The point F is the foot of the perpendicular from D on CB produced. $\angle \mathrm{FAC}=$
(A) 70°
(B) 75°
(C) 80°
(D) 90°
15. For the simultaneous equations $x^{2}+2 x y+y^{2}-x-y=6, x-2 y=3$
(A) there is a solution (x, y) such that both x, y are irrational
(B) there are two sets of solutions (x, y) such that x , y are integers
(C) sum of all solutions is 1
(D) product of all solutions is $\frac{5}{3}$

PART - B

16. The number of right angled triangles with integer side lengths and such that the product of the lengths of the legs (non-hypotenuse sides) equals three times the perimeter of the triangle is \qquad _-.
17. $\alpha, \beta, \gamma, \delta$ are the roots of the equation $x^{4}-a^{3}+a x^{2}+b x+c=0$, where a, b, c are real numbers. The smallest possible value of $\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}$ is \qquad _.
18. Two circles with centers P and Q and radii 3 and 4 respectively touch each other externally. AB, CD are direct common tangents touching the smaller circle at A, C and the bigger circle at B, D. The area of the concave hexagon $A P C D Q B$ is \qquad _.
19. If a, b are the lengths of unequal diagonals of a regular heptagon (regular polygon with 7 sides) with side c , then $\frac{1}{a}+\frac{1}{b}$ in terms of c is \qquad -
20. The number of real roots of the equation $\frac{\log _{10}(\sqrt{x+1}+1)}{\log _{10} \sqrt[3]{x-40}}=3$ is \qquad .
21. x, y, z are non zero real numbers such that $x^{2}+y^{2}+z^{2}=1$
$x\left(\frac{1}{y}+\frac{1}{z}\right)+y\left(\frac{1}{z}+\frac{1}{x}\right)+z\left(\frac{1}{x}+\frac{1}{y}\right)+3=0$ The number of possible values of $\mathrm{x}+\mathrm{y}+\mathrm{z}$ is \qquad .
22. The minimum value of integer n such that among any n integers we can always find three integers whose sum is divisible by 3 is \qquad -.
23. The number of integers n for which $n^{4}-51 n^{2}+50$ is negative is \qquad _.
24. In a triangle $A B C$, the lengths of the sides are consecutive integers and the median drawn from A is perpendicular to the bisector of angle B. The largest side of the triangle has length \qquad -.
25. a, b, c, d, e are real numbers such that

$$
\begin{gathered}
a+4 b+9 c+16 d+25 e=1 \\
4 a+9 b+16 c+25 d+36 e=8 \\
9 a+16 b+25 c+36 d+49 e=23
\end{gathered}
$$

The value of $a+b+c+d+e$ is \qquad _.
26. In a triangle ABC , the altitude, angle bisector and the median from C divide the angle C into four equal angles. The measure of the least angle of the triangle is \qquad _.
27. AB is a chord of a circle with center O . AB is produced to C such that $\mathrm{BC}=\mathrm{OA} . \mathrm{CO}$ is produced to E. The value of $\frac{\angle A O E}{\angle A C E}$ is \qquad .
28. The number of two digit numbers that are less than the sum of the squares of their digits by 11 and exceed twice the product of their digits by 5 is \qquad _.
29. ABD is a circle whose centre is C. The circle circumscribing ABC cuts DA or DA produced at E . Then the triangle BDE is a \qquad triangle.
30. The number of 4 -digit numbers N such that
(a) no digit of N is 9
(b) N is the square of an integer
(c) when each digit of N is increased by 1 , the resulting number is also square of an integer

B havesh S tudy C ircle
 AMTI (NMTC) - 2017

GAUSS CONTEST - INTER LEVEL
 (Standard - XI \& XII)

Note :

1. Fill in the response sheet with your Name, Class and the institution through which you appear in the specified places.
2. Diagrams are only visual aids; they are NOT drawn to scale.
3. You are free to do rough work on separate sheets.
4. Duration of the test : 2 pm to $4 \mathrm{pm}-2$ hours.

PART - A

Note :

- Only one of the choices A, B, C, D is correct for each question. Shade the alphabet of your choice in the response sheet. If you have any doubt in the method of answering, seek the guidance of the supervisor.
- For each correct response you get 1 mark. For each incorrect response you lose $\frac{1}{2}$ mark.

1. The equations $5 x^{2}-10 x \cos \alpha+7 \cos \alpha+6=0$ has two identical roots. If α is one of the angles of a parallelogram with sum of the lengths of two adjacent sides equal to 6 , the maximum area of the parallelogram is
(A) $32 / 5$
(B) $34 / 5$
(C) $36 / 5$
(D) $18 / 5$
2. If $f(x)$ is a polynomial of degree three with leading coefficient 1 such that $f(1)=1$, $f(2)=4, f(3)=9$, then the value of $f(4)$ is
(A) 16
(B) 22
(C) 36
(D) None of these
3. The three roots of the equation $3 x^{3}+\mathrm{p} x^{2}+\mathrm{q} x-4$ are the side length, inradius and the circumradius of an equilateral triangle. Then the value of $2 p+q$ is
(A) -10
(B) 10
(C) $\quad-12$
(D) 12
4. Given $\begin{aligned} a & =-\sqrt{99}+\sqrt{999}+\sqrt{9999} \\ b & =\sqrt{99}-\sqrt{999}+\sqrt{9999}\end{aligned}$ the value of $\frac{a^{4}}{(a-b)(a-c)}+\frac{b^{4}}{(b-c)(b-a)}+\frac{c^{4}}{(c-a)(c-b)}$ $c=\sqrt{99}+\sqrt{999}-\sqrt{9999}$
(A) 22194
(B) $\sqrt{99}+\sqrt{999}+\sqrt{9999}$
(C) 22190
(D) $\sqrt{99 \times 999 \times 9999}$
5. In the figure, ABC is a right angled triangle with $\angle \mathrm{B}=90^{\circ}$, $\mathrm{AB}=8 \mathrm{~cm}$ and $\mathrm{BC}=6 \mathrm{cms}$. Squares ANMC, AEDB, BQPC are described as shown, on the sides $\mathrm{AC}, \mathrm{AB}, \mathrm{BC}$ respectively. Among PM, NE and DQ.

(A) Two are of integral length and the length of the other is irrational
(B) Two are of irrational length and the length of the other is integral
(C) All have irrational lengths
(D) All have integral length
6. In the adjoining figure, ABCD and PQRS are squares. If the length of the side of the bigger square is a, the length of the side of the smaller square is

(A) $\frac{a}{3}$
(B) $\frac{a}{4}$
(C) $\frac{a}{5}$
(D) $\frac{a}{6}$
7. Twelve people sit around a circular table. Each observes that his age (viewed as an integer) is the average of the ages of his left and right neighbours. Which of the following could be the sum of their ages ?
(A) 224
(B) 226
(C) 227
(D) 228
8. A rectangular billiard table has vertices at $(0,0),(12,0),(0,10),(12,10)$. There are pockets only in the four corners. A ball is hit from the corner $(0,0)$ along the line $\mathrm{y}=x$ and bounces off several walls before eventually entering a pocket. The number of walls that the ball bounces off before entering a pocket is
(A) 7
(B) 8
(C) 9
(D) 11
9. In a quadrilateral ABCD , we have $\mathrm{AB}=8, \mathrm{BC}=5, \mathrm{CD}=17$ and $\mathrm{DA}=10$. The diagonals AC and BD meet at E . If $\mathrm{BE}=\mathrm{ED}=1: 2$, the area of the quadrilateral ABCD is
(A) 70
(B) 60
(C) 50
(D) Not uniquely determined
10. Let $S(n)$ denote the sum of the digits of the integer n when n is written in the usual decimal form. For example, $S(123)=6$. If $S(n)=1274$, what is a possible value of $\mathrm{S}(\mathrm{n}+1)$?
(A) 1239
(B) 1266
(C) 1275
(D) 1284
11. The polynomial $\mathrm{g}(x)=x^{3}+\mathrm{a} x^{2}+\mathrm{b} x+\mathrm{c}$ has three distinct roots and each root of $\mathrm{g}(x)=0$ is also a root of $\mathrm{f}(x)=x^{4}+x^{3}+\mathrm{b} x^{2}+100 x+\mathrm{c}$. What is $\mathrm{f}(1)$?
(A) -5005
(B) -6006
(C) -7007
(D) -8008
12. The number $\mathrm{N}=1234567891011 \ldots .41424344$ is the 79 digit number obtained by writing the numbers from 1 to 44 in order. What is the remainder when N is divided by 45 ?
(A) 1
(B) 9
(C) 18
(D) 27
13. Define the sequence F recursively as follows : $F_{0}=1, F_{1}=1$ and for $n \geq 2, F_{n}$ is the remainder of $\mathrm{F}_{\mathrm{n}-1}+\mathrm{F}_{\mathrm{n}-2}$ when divided by 3. What is the value of $\sum_{k=2017}^{2024} F_{k}$?
(A) 6
(B) 7
(C) 8
(D) 9
14. P, Q, R, S have integer coordinates and are distinct points on the circle $x^{2}+y^{2}=25$. The distance PQ and RS are irrational numbers. What is the largest possible value of $\mathrm{PQ} / \mathrm{RS}$?
(A) 3
(B) $5 \sqrt{2}$
(C) 7
(D) $3 \sqrt{5}$
15. In how many ways can 1000 be written as a sum of 2 s and 3 s , ignoring order $(500 \times 2+0 \times 3$ and $50 \times 2+300 \times 3$ are two of the ways)?
(A) 500
(B) 499
(C) 167
(D) 166

PART - B

Note :

- Write the correct answer in the space provided in the response sheet.
- For each correct response you get 1 mark. For each incorrect response you lose $\frac{1}{4}$ mark.

16. The six digit number 789 ABC consists of six distinct digits and is divisible by 7,8 and 9. The three digit number ABC is \qquad _-
17. m, n are relatively prime positive integers such that $\frac{m}{n}=\frac{2(\sqrt{2}+\sqrt{10})}{5 \sqrt{3+\sqrt{5}}}$, then $\mathrm{m}+\mathrm{n}$ equals \qquad -.
18. $A B C$ is a triangle with $A B=17$ units. F is the mid point of $A B$ and $C F=8$ units. The maximum possible area of the triangle $A B C$ is \qquad _.
19. Given that $\mathrm{a}+\mathrm{b}+\mathrm{c}=5$ and $1 \leq \mathrm{a}, \mathrm{b}, \mathrm{c} \leq 2$ the minimum value of $\frac{1}{a+b}+\frac{1}{b+c}$ is \qquad -.
20. The number of ways we can insert + 's between the digits of 111111111111111111 (eighteen 1's) so that the result will be a multiple of 90 is \qquad _.
21. The largest positive integer less than 2017 that has exactly three proper factors (a proper factor is a factor other than the number of itself; for example, 11 has only one proper factor) is \qquad _.
22. Consider the sequence $1,3,4,7,11,18,29, \ldots$. in which each term from the third term onwards is the sum of the two previous terms. Of the first 100 terms of this sequence the number of terms that are multiples of 5 is \qquad _-.
23. The non negative, distinct integers a, b, c, d, e form an arithmetic progression. If the sum of the numbers is 440 , the maximum possible value of e is \qquad _.
24. Let f be defined for all positive integers as follows : $f(n)=\left\{\begin{array}{cl}n^{2}+1 & \text { if } n \text { is odd } \\ \frac{n}{2} & \text { if } n \text { is even }\end{array}\right.$ The number of integers n such that $1 \leq \mathrm{n} \leq 100$ for which $f(f(\ldots f(\mathrm{n})))=1$ (where f is applied some number of times) is \qquad .
25. M and N are three digit numbers with no digit equal to zero. If we rearrange the digits of M all the numbers obtained are less than M . N has the same digits as M but in a different order. If we rearrange the digits of N , the largest number we obtain is M . If $\mathrm{M}+\mathrm{N}=$ 1233, M equals \qquad _.
26. ABCDEF is a hexagon inscribed in a circle of radius R . If $\mathrm{AB}=\mathrm{CD}=\mathrm{EF}=2$ and $\mathrm{BC}=\mathrm{DE}=\mathrm{FA}=10$, the radius R is \qquad _.
27. a, b, c are real numbers satisfying the following equations: $\log _{2}\left(a b c-3+\log _{5} a\right)=5$ $\log _{3}\left(a b c-3+\log _{5} b\right)=4$
$\log _{4}\left(a b c-3+\log _{5} c\right)=4$
The value of $\left|\log _{5} \mathrm{a}\right|+\left|\log _{5} \mathrm{~b}\right|+\left|\log _{5} \mathrm{c}\right|$ is \qquad _.
28. In a triangle $A B C$, I is the incenter. The internal angle bisector of $\angle C$ meets $A B$ at F and the circum circle of triangle ABC at Z . If $\mathrm{FI}=2, \mathrm{ZF}=3$ and $\mathrm{IC}=\mathrm{m} / \mathrm{n}$ where m, n are relatively prime positive integers, the value of $m+n$ is \qquad .
29. The largest integer such that $n^{3}+4 n^{2}-15 n-18$ is a perfect cube is \qquad .
30. The grid below shows a network of roads and pond (there are 8 horizontal lines and 8 vertical lines in the figure). You can move only horizontally or vertically from one grid point to an adjacent grid point. You do not know swimming and hence need to avoid going through the triangular pond at the top left corner of the grid. The number of shortest paths between P and Q is \qquad _.

B havesh S tudy C ircle
 AMTI (NMTC) - 2004

1. Find all integers $\mathrm{n} \geq 1$ such that $\frac{n^{3}+3}{n^{2}+7}$ is an integer.
2. A point is chosen on each side of a unit square. The four points form the sides of a quadrilateral with sides of lengths $\mathrm{a}, \mathrm{b}, \mathrm{c}$, d. Show that $2 \leq a^{2}+b^{2}+c^{2}+d^{2} \leq 4$

$$
2 \sqrt{2} \leq a+b+c+d \leq 4
$$

3. ABCD is a convex quadrilateral inscribed in a circle Σ. Assume that A, B and Σ are fixed and C, D are variable points, so that the length of the segment $C D$ remains constant. Points X and Y are on the rays $A C$ and $B C$ respectively such that $A X=A D$ and $B Y=B D$. Prove that the distance between X and Y remains constant.
4. In the adjoining figure, OB is the perpendicular bisector of DE . A is a point on OB ; AF is perpendicular to OB and EF intersects OB at C . Show that OC is the harmonic mean between OA and OB . i.e., $O C=\frac{2 \cdot O A \cdot O B}{O A+O B}$.

5. Find all integral values of x, y, z, w given that $x!+y!=2^{z} 3^{w}$.
6. A convex polygon of nine vertices $\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \ldots \ldots, \mathrm{P}_{8}$ is given along with six diagonals as shown in diagram. We see that 7 triangles $\mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{3}, \mathrm{P}_{0} \mathrm{P}_{3} \mathrm{P}_{6}, \mathrm{P}_{0} \mathrm{P}_{6} \mathrm{P}_{7}, \mathrm{P}_{0} \mathrm{P}_{7} \mathrm{P}_{8}, \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3}, \mathrm{P}_{3} \mathrm{P}_{4} \mathrm{P}_{6}$ and $\mathrm{P}_{4} \mathrm{P}_{5} \mathrm{P}_{6}$ are created. These triangles are to be numbered $\Delta_{1}, \Delta_{2}, \Delta_{3}, \ldots, \Delta_{7}$ so that P_{i} is a vertex of Δ_{i}. In how many ways can this be done? Justify your answer.

7. Let $f(x)$ be a linear function such that $f(0)=-5$ and $f(f(0))=-15$. Find all values of m for which the solutions of the inequality $f(x) f(m-x)>0$ form an interval of length 2 .
8. In how many ways can you select two disjoint subsets from a set having n elements ?

B havesh S tudy C ircle
 AMTI (NMTC) - 2011

RAMANUJAN CONTEST - FINAL - INTER LEVEL

1. Let O and I be respectively the circumcentre and incentre of a triangle $A B C$. Given $\mathrm{C}=30^{\circ}$. Let E and D be points respectively on AC and BC such that $\mathrm{AE}=\mathrm{AB}=\mathrm{BD}$. Show that $\mathrm{DE}=\mathrm{IO}$ and DE and IO are perpendicular to each other.
2. Let N be a 2 n digit number with digits $\mathrm{d}_{1}, \mathrm{~d}_{2}, \mathrm{~d}_{3}, \ldots, ., \mathrm{d}_{2 \mathrm{n}}$ from left to right (i.e.) $\mathrm{N}=\mathrm{d}_{1} \mathrm{~d}_{2} \ldots . . \mathrm{d}_{2 \mathrm{n}}$ where $\mathrm{d}_{\mathrm{i}} \neq 0, \mathrm{i}=1,2,3, \ldots \ldots, 2 \mathrm{n}$. Find the number of such N so that the sum $d_{1} \times d_{2}+d_{2}+d_{3} \times d_{4}+d_{5} \times d_{6}+\ldots . .+d_{2 n-1} \times d_{2 n}$ is even.
3. $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots \ldots . \mathrm{P}_{\mathrm{n}}$ be n points on a circle (in order) dividing the circumference into n equal arcs. Find a permutation $Q_{1}, Q_{2}, \ldots \ldots, Q_{n}$ of these points such that the sum of the lengths of the path $Q_{1} Q_{2}+Q_{2} Q_{3}+\ldots \ldots+Q_{n-1} Q_{n}$ is maximum.
4. AA^{1} is the median of the triangle ABC . BE, CF are the altitudes of the triangle ABC , cutting at the orthocenter H. The line joining E, F meets BC produced at Q. Show that H is also the orthocenter of the triangle $\mathrm{AA}^{1} \mathrm{Q}$.
5. Let $\frac{p}{q}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{256}$ where $(\mathrm{p}, \mathrm{q})=1$. Prove that p is divisible by $257^{2}(257$ is a prime).
6. a, b, c are real numbers such that $a b c+a+c=b$ and $a c \neq 1$. Find the greatest value of the expression $\left(\frac{2}{a^{2}+1}-\frac{2}{b^{2}+1}+\frac{3}{c^{2}+1}\right)$.
7. $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots ., \mathrm{x}_{\mathrm{n}}(\mathrm{n} \geq 2)$ are reals satisfying $\frac{1}{x_{1}+2011}+\frac{1}{x_{2}+2011}+\ldots .+\frac{1}{x_{n}+2011}=\frac{1}{2011}$. Show that $\frac{\sqrt[n]{x_{1} x_{2} \ldots x_{n}}}{(n-1)} \geq 2011$.
8. ABC is a scalene triangle. Equilateral triangles $\mathrm{ABC}_{1}, \mathrm{BCA}_{1}, \mathrm{CAB}_{1}$ are drawn outwards of the triangle ABC .

Prove that
(a) $\mathrm{AA}_{1}, \mathrm{BB}_{1}, \mathrm{CC}_{1}$ are concurrent (at a point K say)
(b) $\mathrm{AA}_{1}=\mathrm{KA}+\mathrm{KB}+\mathrm{KC}$.

B havesh S tudy C ircle
 AMTI (NMTC) - 2012

RAMANUJAN CONTEST - FINAL - INTER LEVEL

1. Find all the pairs (x, y) where x, y are integers satisfying $(2 x-1)^{3}+16=y^{4}$.
2. I is the incentre of the isosceles triangle ABC in which $\mathrm{AB}=\mathrm{AC}$. Let Σ be a circle which touches $A B$ at E and $A C$ at F and touches the circumcircle of triangle $A B C$ internally. Prove that I lies on EF.
3. A function $f: Q \rightarrow Q$, where is the set of rational numbers, satisfies the conditions
(a) $f(1)=2$.
(b) $f(x y)+f(x+y)=f(x) \cdot f(y)+1$ for all $x, y \in Q$. Determinate all such functions f, with proof.
4. Let B be a point on the circle Σ_{1} and A be a point on the tangent at B to $\Sigma_{1}(\mathrm{~B} \neq \mathrm{A})$. Let C be a point not on Σ_{1} such that AC meets Σ_{1} in two distinct points. Let Σ_{2} be a circle touching AC at C and Σ_{1} and D on the same side of AC as B . Prove that the circumcentre of triangle BCD lies on the circumcircle of triangle ABC .
5. Find all positive integers x, y, z such that $8^{x}+15^{y}=17^{x}$.
6. A Pythagorean triangle is a right triangle in which all the three sides are of integer lengths. Let a, b be the legs of a Pythagorean triangle, and h be altitude to the hypotenuse. Determine all such a triangles for which $\frac{1}{a}+\frac{1}{b}+\frac{1}{h}=1$.
7. Let $f(n)$ be a function defined on the non-negative integer n. Given
(a) $\mathrm{f}(0)=\mathrm{f}(1)=0$
(b) $\mathrm{f}(2)=1$
(c) for $\mathrm{n}>2, \mathrm{f}(\mathrm{n})$ gives the smallest positive integer which does not divide n .
8. In a circle C with centre O and radius r , let C_{1} and C_{2} be two circles with centres $\mathrm{O}_{1}, \mathrm{O}_{2}$ and radii r_{1} and r_{2} respectively be situated such that each circle C_{1} and C_{2} is internally tangent to C at A_{1} and A_{2} respectively and such that C_{1} and C_{2} are externally tangent to each other at A . Prove that the three lines $\mathrm{OA}, \mathrm{O}_{1} \mathrm{~A}_{2}$ and $\mathrm{O}_{2} \mathrm{~A}_{1}$ are concurrent.

B havesh S tudy C ircle
 AMTI (NMTC) - 2014

RAMANUJAN CONTEST - FINAL - INTER LEVEL

1. ABC is a triangle in which $\mathrm{AB}>\mathrm{AC}>\mathrm{BC}$. D is a point on the minor arc BC of the circumcircle of the triangle $A B C$. O is the circumcentre. E and F are the intersection points of the line $A D$ with the perpendiculars from O to $A B$ and $A C$ respectively. P is the point of intersection of BE and CF . If $\mathrm{PB}=\mathrm{PC}+\mathrm{PO}$, find the angle A of the triangle ABC .
2. a) For the positive integer n define $f(n)=1^{n}+2^{n-1}+3^{n-2}+\ldots+(n-2)^{3}+(n-1)^{2}+n^{1}$. What is the minimum value of $\frac{f(n+1)}{f(n)}$?
b) ABC is an isosceles triangle in which $\mathrm{AB}=\mathrm{AC}$. The bisector of $\angle \mathrm{B}$ meets AC at D and it is given that $B C=B D+A D$. Find $\angle A$ of the triangle $A B C$.
3. Let n be a positive integer and S_{n} be the set of all positive integer divisors of n (including 1 and itself). Prove that at most half of the elements of S_{n} have their units digit equal to 3 .
4. a) Let A be a set of 8 elements. Find the maximum number of 3 - element subsets of A, such that the intersection of any two of them is not a 2 element set.
b) a, b, c, d, are all positive reals and $\frac{1}{1+a^{4}}+\frac{1}{1+b^{4}}+\frac{1}{1+c^{4}}+\frac{1}{1+d^{4}}=1$. Prove that $\operatorname{abcd} \geq 3$.
5. In a plane there are two similar, convex quadrilaterals $A B C D$ and $A B_{1} C_{1} D_{1}$ such that C, D are inside $A B_{1} C_{1} D_{1}$ and B is outside $A B_{1} C_{1} D_{1}$. Prove that if the lines $B_{1}, C C_{1}, D D_{1}$ are concurrent, then ABCD is cyclic. Is the converse true ?
6. Prove that if the integer n is not divisible by 5 , then the polynomial $f(x)=x^{5}-x+n$ cannot be factored as the product of two non-constant polynomials with integer coefficients.
7. a) One may perform the following two operations on a positive integer.
(i) Multiply it by any positive integer.
(ii) Delete zeros in its decimal representation.
b) Show that $1!+2!+3!+\ldots .+2013$! can not be written as n^{k} for any integer n and integer $\mathrm{k} \geq 2$.
8. a) $\lfloor x\rfloor$ denotes the floor function (the greatest integer function). Let r be a real number for which $\left\lfloor r+\frac{19}{100}\right\rfloor+\left\lfloor r+\frac{20}{100}\right\rfloor\left\lfloor\left\lfloor r+\frac{21}{100}\right\rfloor+\ldots+\left\lfloor r+\frac{91}{100}\right\rfloor=546\right.$. Solve the equation $x+\lfloor 100 r\rfloor=2013$.
b) For all distinct positive integers m and n prove (2013 $)^{2^{n}}+2^{2^{n}}$ is relatively prime to $(2013)^{2^{m}}+2^{2^{m}}$.

B havesh S tudy C ircle
 AMTI (NMTC) - 2015

RAMANUJAN CONTEST - FINAL - INTER LEVEL

1. a) If x and y are positive reals such that $\mathrm{x}^{2014}+\mathrm{y}^{2014}=1$ prove that $\left(\sum_{k=1}^{1007} \frac{1+x^{2 k}}{1+x^{4 k}}\right)\left(\sum_{k=1}^{1007} \frac{1+y^{2 k}}{1+y^{4 k}}\right)<\frac{1}{(1-x)(1-y)}$.
b) The angles of a triangle are in arithmetic progression. The altitudes of this triangle are also in arithmetic progression. Show that the triangle is equilateral.
2. ABC is an acute angled triangle in which the three sides are unequal. $\mathrm{L}, \mathrm{M}, \mathrm{N}$ are respectively the midpoints of the sides BC, CA and AB . The perpendicular bisectors of the sides AB and AC intersect AL at D and E respectively. BD and CE cut at F inside the triangle. Show that A, M, F, N are concyclic.
3. S is a finite set of positive integers such that for any two distinct numbers of $S, a \operatorname{and} b$, the number $\frac{a+b}{\operatorname{gcd}(a, b)}$ is also a member of S . Determine all such sets S .
4. a) Find all real number triples (x, y, z) which satisfy

$$
\begin{gathered}
3\left(x^{2}+y^{2}+z^{2}\right)=1 \\
x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}=x y z(x+y+z)^{3}
\end{gathered}
$$

b) Show that all the integers 1 to 16 can be written in a line, but not in a circle, so that the sum of any two adjacent numbers is a perfect square.
5. A certain number is the product of three different prime factors, the sum of whose squares is 2331. There are 7560 numbers (including unity) which are less than the number and prime to it. The sum of all its divisors (including unity and the number) is 10560 . Find the number.
6. A rectangular parallelepiped is given, such that its intersection with a plane is a regular hexagon. Prove that the rectangular parallelepiped is a cube.
7. A triangle $A B C$ is given. The midpoints of the sides $A C$ and $A B$ are B_{1} and C_{1} respectively. The incenter of the $\triangle A B C$ is I. The lines $B_{1} I$ and $C_{1} I$ meet the sides $A B, A C$ at C_{2} and B_{2} respectively. If the areas of $\Delta A B C$ and $\Delta A B_{2} C_{2}$ are equal, find the measure of the angle BAC.
8. If $(a+b)$ and $(a-b)$ are relatively prime integers for some natural numbes a, b. Find the greatest common divisor of $2 a+(1-2 a)\left(a^{2}-b^{2}\right)$ and $2 a\left(a^{2}+2 a-b^{2}\right)\left(a^{2}-b^{2}\right)$.

B havesh S tudy C ircle
 AMTI (NMTC) - 2017
 RAMANUJAN - FINAL - INTER LEVEL

1. $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are three points on a circle. The distance of C from the tangents at A and B to the circle are a and b respectively. If the distance of C from the chord $A B$ is c, show that c is the geometric mean of a and b.
2. Find all integer solutions to the equation $x^{3}+(x+4)^{2}=y^{2}$.
3. Two right angled triangles are such that the incircle of one triangle is equal in size to the circum circle of the other. If Δ_{1} is the area of the first triangle and Δ_{2}, the area of the second triangle, show that $\frac{\Delta_{1}}{\Delta_{2}} \geq 3+2 \sqrt{2}$.
4. (a) Find the maximum value k for which one can choose k integers from $1,2, \ldots ., 2 \mathrm{n}$ so that none of the chosen integers is divisible by any other chosen integer.
(b) $\mathrm{F}(\mathrm{x})$ is a polynomial of degree 2016 such that all the coefficients are non negative and none exceed $\mathrm{F}(0)$. Show that the coefficient of x^{2017} in $(\mathrm{F}(\mathrm{x}))^{2}$ is at most $\frac{F(1)^{2}}{2}$.
5. (a) $n \geq 3$ and $a_{1}, a_{2}, \ldots ., a_{n}$ are different positive integers. Given that, except the first and the last, each one is a harmonic means of its immediate neighbors. Show that none of the given integers is less than $\mathrm{n}-1$.
(b) Show that the shortest side of a cyclic quadrilateral with circumradius 1 is at most $\sqrt{2}$.
6. $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ are circles with radii $1,2,3$ respectively, touching each other as shown. Two circles can be drawn touching all these three circles. Find the radii of these two circles.
